Skip Navigation
Show nav
Heroku Dev Center Dev Center
  • Get Started
  • Documentation
  • Changelog
  • Search
Heroku Dev Center Dev Center
  • Get Started
    • Node.js
    • Ruby on Rails
    • Ruby
    • Python
    • Java
    • PHP
    • Go
    • Scala
    • Clojure
    • .NET
  • Documentation
  • Changelog
  • More
    Additional Resources
    • Home
    • Elements
    • Products
    • Pricing
    • Careers
    • Help
    • Status
    • Events
    • Podcasts
    • Compliance Center
    Heroku Blog

    Heroku Blog

    Find out what's new with Heroku on our blog.

    Visit Blog
  • Log in or Sign up
View categories

Categories

  • Heroku Architecture
    • Compute (Dynos)
      • Dyno Management
      • Dyno Concepts
      • Dyno Behavior
      • Dyno Reference
      • Dyno Troubleshooting
    • Stacks (operating system images)
    • Networking & DNS
    • Platform Policies
    • Buildpacks
    • Platform Principles
  • Developer Tools
    • AI Tools
    • Command Line
    • Heroku VS Code Extension
  • Deployment
    • Deploying with Git
    • Deploying with Docker
    • Deployment Integrations
  • Continuous Delivery & Integration (Heroku Flow)
    • Continuous Integration
  • Language Support
    • Node.js
      • Working with Node.js
      • Node.js Behavior in Heroku
      • Troubleshooting Node.js Apps
    • Ruby
      • Rails Support
        • Working with Rails
      • Working with Bundler
      • Working with Ruby
      • Ruby Behavior in Heroku
      • Troubleshooting Ruby Apps
    • Python
      • Working with Python
      • Background Jobs in Python
      • Python Behavior in Heroku
      • Working with Django
    • Java
      • Java Behavior in Heroku
      • Working with Java
      • Working with Maven
      • Working with Spring Boot
      • Troubleshooting Java Apps
    • PHP
      • Working with PHP
      • PHP Behavior in Heroku
    • Go
      • Go Dependency Management
    • Scala
    • Clojure
    • .NET
      • Working with .NET
  • Databases & Data Management
    • Heroku Postgres
      • Postgres Basics
      • Postgres Getting Started
      • Postgres Performance
      • Postgres Data Transfer & Preservation
      • Postgres Availability
      • Postgres Special Topics
      • Migrating to Heroku Postgres
    • Heroku Key-Value Store
    • Apache Kafka on Heroku
    • Other Data Stores
  • AI
    • Inference Essentials
    • Inference API
    • Inference Quick Start Guides
    • AI Models
    • Tool Use
    • AI Integrations
    • Vector Database
  • Monitoring & Metrics
    • Logging
  • App Performance
  • Add-ons
    • All Add-ons
  • Collaboration
  • Security
    • App Security
    • Identities & Authentication
      • Single Sign-on (SSO)
    • Private Spaces
      • Infrastructure Networking
    • Compliance
  • Heroku Enterprise
    • Enterprise Accounts
    • Enterprise Teams
  • Patterns & Best Practices
  • Extending Heroku
    • Platform API
    • App Webhooks
    • Heroku Labs
    • Building Add-ons
      • Add-on Development Tasks
      • Add-on APIs
      • Add-on Guidelines & Requirements
    • Building CLI Plugins
    • Developing Buildpacks
    • Dev Center
  • Accounts & Billing
  • Troubleshooting & Support
  • Integrating with Salesforce
    • Heroku AppLink
      • Working with Heroku AppLink
      • Heroku AppLink Reference
      • Getting Started with Heroku AppLink
    • Heroku Connect (Salesforce sync)
      • Heroku Connect Administration
      • Heroku Connect Reference
      • Heroku Connect Troubleshooting
    • Other Salesforce Integrations
  • AI
  • Inference Quick Start Guides
  • Python Quick Start Guide for /v1/chat/completions API

Python Quick Start Guide for /v1/chat/completions API

English — 日本語に切り替える

Table of Contents [expand]

  • Prerequisites
  • Python Example Code

Last updated February 09, 2026

Chat models generate conversational completions for input messages. This guide describes how to use the v1-chat-completions API with Python.

Prerequisites

Before making requests, provision access to the model of your choice.

  1. Attach an inference addon to an app of yours:

    # If you don't have an app yet, you can create one with:
    heroku create $APP_NAME # specify the name you want for your app (or skip this step to use an existing app you have)
    
    # Create and attach one of our chat models to your app, $APP_NAME:
    heroku addons:create heroku-inference:standard -a $APP_NAME --as INFERENCE
    
  2. Install the necessary requests package:

    pip install requests
    

Python Example Code

import requests
import json
import os

# Global variables for API endpoint, authorization key, and model ID from Heroku config variables
ENV_VARS = {
    "INFERENCE_URL": None,
    "INFERENCE_KEY": None,
}

# Assert the existence of required environment variables, with helpful messages if they're missing.
for env_var in ENV_VARS.keys():
    value = os.environ.get(env_var)
    assert value is not None, (
        f"Environment variable '{env_var}' is missing. Set it using:\n"
        f"export {env_var}=$(heroku config:get -a $APP_NAME {env_var})"
    )
    ENV_VARS[env_var] = value


def parse_chat_output(response):
    """
    Parses and prints the API response for the chat completion request.

    Parameters:
        - response (requests.Response): The response object from the API call.
    """
    if response.status_code == 200:
        result = response.json()
        print("Chat Completion:", result["choices"][0]["message"]["content"])
    else:
        print(f"Request failed: {response.status_code}, {response.text}")

def generate_chat_completion(payload):
    """
    Generates a chat completion using the Stability AI Chat Model.

    Parameters:
        - payload (dict): dictionary containing parameters for the chat completion request

    Returns:
        - Prints the generated chat completion.
    """
    # Set headers using the global API key
    HEADERS = {
        "Authorization": f"Bearer {ENV_VARS['INFERENCE_KEY']}",
        "Content-Type": "application/json"
    }
    endpoint_url = ENV_VARS['INFERENCE_URL'] + "/v1/chat/completions"
    response = requests.post(endpoint_url, headers=HEADERS, data=json.dumps(payload))

    parse_chat_output(response=response)


# Example payload
payload = {
    "model": "claude-4-5-sonnet",
    "messages": [
        { "role": "user", "content": "Hello!" },
        { "role": "assistant", "content": "Hi there! How can I assist you today?" },
        { "role": "user", "content": "Why is Heroku so cool?"}
    ],
    "temperature": 0.5,
    "max_tokens": 100,
    "stream": False
}

# Generate a chat completion with the given payload
generate_chat_completion(payload)

Feedback

Log in to submit feedback.

Information & Support

  • Getting Started
  • Documentation
  • Changelog
  • Compliance Center
  • Training & Education
  • Blog
  • Support Channels
  • Status

Language Reference

  • Node.js
  • Ruby
  • Java
  • PHP
  • Python
  • Go
  • Scala
  • Clojure
  • .NET

Other Resources

  • Careers
  • Elements
  • Products
  • Pricing
  • RSS
    • Dev Center Articles
    • Dev Center Changelog
    • Heroku Blog
    • Heroku News Blog
    • Heroku Engineering Blog
  • Twitter
    • Dev Center Articles
    • Dev Center Changelog
    • Heroku
    • Heroku Status
  • Github
  • LinkedIn
  • © 2026 Salesforce, Inc. All rights reserved. Various trademarks held by their respective owners. Salesforce Tower, 415 Mission Street, 3rd Floor, San Francisco, CA 94105, United States
  • heroku.com
  • Legal
  • Terms of Service
  • Privacy Information
  • Responsible Disclosure
  • Trust
  • Contact
  • Cookie Preferences
  • Your Privacy Choices